Factorial Function ! (2024)

Example: 4! is shorthand for 4 × 3 × 2 × 1

Factorial Function ! (1)

The factorial function (symbol: !) says to multiply all whole numbers from our chosen number down to 1.

Examples:

  • 4! = 4 × 3 × 2 × 1 = 24
  • 7! = 7 × 6 × 5 × 4 × 3 × 2 × 1 = 5040
  • 1! = 1

We usually say (for example) 4! as "4 factorial", but some people say "4 shriek" or "4 bang"

Calculating From the Previous Value

We can easily calculate a factorial from the previous one:

Factorial Function ! (2)

As a table:

n n!
1 1 1 1
2 2 × 1 = 2 × 1! = 2
3 3 × 2 × 1 = 3 × 2! = 6
4 4 × 3 × 2 × 1 = 4 × 3! = 24
5 5 × 4 × 3 × 2 × 1 = 5 × 4! = 120
6 etc etc

  • To work out 6!, multiply 120 by 6 to get 720
  • To work out 7!, multiply 720 by 7 to get 5040
  • And so on

Example: 9! equals 362,880. Try to calculate 10!

10! = 10 × 9!

10! = 10 × 362,880 = 3,628,800

So the rule is:

n! = n × (n−1)!

Which says

"the factorial of any number is that number times the factorial of (that number minus 1)"

So 10! = 10 × 9!, ... and 125! = 125 × 124!, etc.

What About "0!"

Zero Factorial is interesting ... it is generally agreed that 0! = 1.

It may seem funny that multiplying no numbers together results in 1, but let's follow the pattern backwards from, say, 4! like this:

Factorial Function ! (3)

And in many equations using 0! = 1 just makes sense.

Factorial Function ! (4)

Example: how many ways can we arrange letters (without repeating)?

  • For 1 letter "a" there is only 1 way: a
  • For 2 letters "ab" there are 1×2=2 ways: ab, ba
  • For 3 letters "abc" there are 1×2×3=6 ways: abc acb cab bac bca cba
  • For 4 letters "abcd" there are 1×2×3×4=24 ways: (try it yourself!)
  • etc

The formula is simply n!

Now ... how many ways can we arrange no letters? Just one way, an empty space:

Factorial Function ! (5)

So 0! = 1

Where is Factorial Used?

One area they are used is in Combinations and Permutations. We had an example above, and here is a slightly different example:

Factorial Function ! (6)

Example: How many different ways can 7 people come 1st, 2nd and 3rd?

The list is quite long, if the 7 people are called a,b,c,d,e,f and g then the list includes:

abc, abd, abe, abf, abg, acb, acd, ace, acf, ... etc.

The formula is 7!(7−3)! = 7!4!

Let us write the multiplies out in full:

7 × 6 × 5 × 4 × 3 × 2 × 14 × 3 × 2 × 1 = 7 × 6 × 5

That was neat. The 4 × 3 × 2 × 1 "cancelled out", leaving only 7 × 6 × 5. And:

7 × 6 × 5 = 210

So there are 210 different ways that 7 people could come 1st, 2nd and 3rd.

Done!

Example: What is 100! / 98!

Using our knowledge from the previous example we can jump straight to this:

100!98! = 100 × 99 = 9900

A Small List

n n!
0 1
1 1
2 2
3 6
4 24
5 120
6 720
7 5,040
8 40,320
9 362,880
10 3,628,800
11 39,916,800
12 479,001,600
13 6,227,020,800
14 87,178,291,200
15 1,307,674,368,000
16 20,922,789,888,000
17 355,687,428,096,000
18 6,402,373,705,728,000
19 121,645,100,408,832,000
20 2,432,902,008,176,640,000
21 51,090,942,171,709,440,000
22 1,124,000,727,777,607,680,000
23 25,852,016,738,884,976,640,000
24 620,448,401,733,239,439,360,000
25 15,511,210,043,330,985,984,000,000

As you can see, it gets big quickly.

If you need more, try the Full Precision Calculator.

Interesting Facts

Six weeks is exactly 10! seconds (=3,628,800)

Here is why:

Seconds in 6 weeks: 60 × 60 × 24 × 7 × 6
Factor some numbers: (2 × 3 × 10) × (3 × 4 × 5) × (8 × 3) × 7 × 6
Rearrange: 2 × 3 × 4 × 5 × 6 × 7 × 8 × 3 × 3 × 10
Lastly 3×3=9: 2 × 3 × 4 × 5 × 6 × 7 × 8 × 9 × 10

Factorial Function ! (7)

There are 52! ways to shuffle a deck of cards.

That is 8.0658175... × 1067

Just shuffle a deckof cards and it is likely that you are the first person ever with that particular order.

There are about 60! atoms in the observable Universe.

60! is about 8.320987... × 1081 and the current estimates are between 1078 to 1082 atoms in the observable Universe.

70! is approximately 1.197857... x 10100, which is just larger than a Googol (the digit 1 followed by one hundred zeros).

100! is approximately 9.3326215443944152681699238856 x 10157

200! is approximately 7.8865786736479050355236321393 x 10374

A Close Formula!

n! ≈ (ne)n 2πn

The "≈" means "approximately equal to". Let us see how good it is:

nn!Close Formula
(to 2 Decimals)
Accuracy
(to 4 Decimals)
110.920.9221
221.920.9595
365.840.9727
42423.510.9794
5120118.020.9835
6720710.080.9862
750404980.400.9882
84032039902.400.9896
9362880359536.870.9908
1036288003598695.620.9917
113991680039615625.050.9925
12479001600475687486.470.9931

If you don't need perfect accuracy this may be useful.

Note: it is called "Stirling's approximation" and is based on a simplifed version of the Gamma Function.

What About Negatives?

Can we have factorials for negative numbers?

Yes ... but not for negative integers.

Negative integer factorials (like -1!, -2!, etc) are undefined.

Let's start with 3! = 3 × 2 × 1 = 6 and go down:

2! = 3! / 3 = 6 / 3 = 2
1! = 2! / 2 = 2 / 2 = 1
0! = 1! / 1 = 1 / 1 = 1
which is why 0!=1
(−1)! = 0! / 0 = 1 / 0 = ?
oops, dividing by zero is undefined

And from here on down all integer factorials are undefined.

What About Decimals?

Can we have factorials for numbers like 0.5 or −3.217?

Yes we can! But we need to use the Gamma Function (advanced topic).

Factorials can also be negative (except for negative integers).

Half Factorial

But I can tell you the factorial of half (½) is half of the square root of pi .

Here are some "half-integer" factorials:

(−½)! = √π
(½)! = (½)√π
(3/2)! = (3/4)√π
(5/2)! = (15/8)√π

It still follows the rule that "the factorial of any number is that number times the factorial of (1 smaller than that number)", because

(3/2)! = (3/2) × (1/2)!
(5/2)! = (5/2) × (3/2)!

Can you figure out what (7/2)! is?

Double Factorial!!

A double factorial is like a normal factorial but we skip every second number:

  • 8!! = 8 × 6 × 4 × 2 = 384
  • 9!! = 9 × 7 × 5 × 3 × 1 = 945

Notice how we multiply all even, or all odd, numbers.

Note: if we want to apply factorial twice we write (n!)!

2229, 2230, 7006, 2231, 7007, 9080, 9081, 9082, 9083, 9084

Combinations and Permutations Gamma Function Numbers Index

Factorial Function ! (2024)

References

Top Articles
Patrick Mahomes Biography Facts, Childhood, Personal Life | SportyTell
Vegan Pot Pie Recipe
Jack Doherty Lpsg
His Lost Lycan Luna Chapter 5
Here are all the MTV VMA winners, even the awards they announced during the ads
Craigslist Parsippany Nj Rooms For Rent
Gameplay Clarkston
David Packouz Girlfriend
Lenscrafters Westchester Mall
Nieuwe en jong gebruikte campers
What Does Dwb Mean In Instagram
Capitulo 2B Answers Page 40
Wisconsin Women's Volleyball Team Leaked Pictures
House Party 2023 Showtimes Near Marcus North Shore Cinema
104 Whiley Road Lancaster Ohio
Buy PoE 2 Chaos Orbs - Cheap Orbs For Sale | Epiccarry
Snow Rider 3D Unblocked Wtf
The Ultimate Style Guide To Casual Dress Code For Women
Prestige Home Designs By American Furniture Galleries
Craigslist Pinellas County Rentals
Glenda Mitchell Law Firm: Law Firm Profile
Daytonaskipthegames
Samantha Aufderheide
Culver's Flavor Of The Day Taylor Dr
Which Sentence is Punctuated Correctly?
Www.craigslist.com Austin Tx
The Clapping Song Lyrics by Belle Stars
Www.1Tamilmv.con
Math Minor Umn
Eaccess Kankakee
Manuel Pihakis Obituary
Gerber Federal Credit
6143 N Fresno St
Tgh Imaging Powered By Tower Wesley Chapel Photos
Ducky Mcshweeney's Reviews
Xemu Vs Cxbx
Gwu Apps
Reese Witherspoon Wiki
Sour OG is a chill recreational strain -- just have healthy snacks nearby (cannabis review)
Uc Davis Tech Management Minor
Arcanis Secret Santa
Perc H965I With Rear Load Bracket
My Gsu Portal
Jigidi Free Jigsaw
Greatpeople.me Login Schedule
Aznchikz
Hughie Francis Foley – Marinermath
Barback Salary in 2024: Comprehensive Guide | OysterLink
Craigslist Pet Phoenix
Skyward Login Wylie Isd
Billings City Landfill Hours
683 Job Calls
Latest Posts
Article information

Author: Wyatt Volkman LLD

Last Updated:

Views: 6346

Rating: 4.6 / 5 (46 voted)

Reviews: 85% of readers found this page helpful

Author information

Name: Wyatt Volkman LLD

Birthday: 1992-02-16

Address: Suite 851 78549 Lubowitz Well, Wardside, TX 98080-8615

Phone: +67618977178100

Job: Manufacturing Director

Hobby: Running, Mountaineering, Inline skating, Writing, Baton twirling, Computer programming, Stone skipping

Introduction: My name is Wyatt Volkman LLD, I am a handsome, rich, comfortable, lively, zealous, graceful, gifted person who loves writing and wants to share my knowledge and understanding with you.